EFECTOS DE ORDEN DE PRESENTACIÓN Y RANGOS DE DURACIÓN EN LA TAREA DE GENERALIZACIÓN TEMPORAL EPISÓDICA

Autores/as

  • Ezequiel Mikulan
  • Manuel Bruzzone
  • Manuel Serodio
  • Edinson Muñoz
  • Néstor Singer
  • Mariano Sigman
  • Tristán Bekinschtein
  • Adolfo M. García
  • Lucas Sedeño
  • Agustín Ibáñez

Palabras clave:

Procesamiento temporal, generalización temporal episódica, rango de duración

Resumen

El modelo actual de la tarea de Generalización Temporal Episódica (GTE), donde los participantes juzgan si pares de estímulos auditivos son iguales en duración, predice que los resultados son independientes de la escala y orden de presentación de los estímulos. Para evaluar estas predicciones, se realizaron tres experimentos con duraciones estándar mayores y menores a 1 segundo, considerando el orden de presentación. Las proporciones fueron espaciadas linealmente en los Experimentos 1 y 2 y logarítmicamente en el Experimento 3. Se observaron efectos de rango de duración y orden de presentación con ambos esque- mas de espaciado. Los resultados de este estudio constituyen el primer reporte de efectos de orden de presentación en la tarea de Generalización Temporal Episódica y demuestran que estudios futuros deberían considerar siempre el rango de duración, número de ensayos y orden de presentación como factores cruciales que modulan el desempeño.

Citas

Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(3), 656-677. doi:10.1093/brain/awr210

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behav Res Methods, 37(3), 379-384.

Bausenhart, K. M., Dyjas, O., & Ulrich, R. (2015). Effects of stimulus order on discrimination sensitivity for short and long durations. Attention, Perception, & Psychophysics, 77(4), 1033-1043. doi:10.3758/s13414-015-0875-8

Berret, B., & Jean, F. (2016). Why Don't We Move Slower? The Value of Time in the Neural Control of Action. J Neurosci, 36(4), 1056-1070. doi:10.1523/JNEUROSCI.1921-15.2016

Brainard, D. H. (1997). The Psychophysics Toolbox. Spat Vis, 10(4), 433-436.

Buccheri, R., Saniga, M., Stuckey, W. M., & North Atlantic Treaty Organization. Scientific Affairs Division. (2003). The nature of time--geometry, physics, and perception. Dordrecht; Boston: Kluwer Academic Publishers.

Buzsaki, G. (2013). Cognitive neuroscience: Time, space and memory. Nature, 497(7451), 568-569. doi:10.1038/497568a

Chen, L., Bao, Y., & Wittmann, M. (2016). Editorial: Sub- and Supra-Second Timing: Brain, Learning and Development. Front Psychol, 7, 747. doi:10.3389/fpsyg.2016.00747

Chittaro, L., & Montanari, A. (2000). Temporal representation and reasoning in artificial intelligence: Issues and approaches. Annals of Mathematics and Artificial Intelligence, 28(1), 47-106. doi:10.1023/a:1018900105153

Church, R. M., & Gibbon, J. (1982). Temporal generalization. Journal of Experimental Psychology. Animal Behavior Processes, 8(2), 165-186.

Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences, 15(02), 183-201.

Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory and Language, 59(4), 447-456.

Dyjas, O., Bausenhart, K. M., & Ulrich, R. (2012). Trial-by-trial updating of an internal reference in discrimination tasks: evidence from effects of stimulus order and trial sequence. Atten Percept Psychophys, 74(8), 1819-1841. doi:10.3758/s13414-012-0362-4

Dyjas, O., & Ulrich, R. (2014). Effects of stimulus order on discrimination processes in comparative and equality judgements: data and models. Quarterly Journal of Experimental Psychology, 67(6), 1121-1150. doi:10.1080/17470218.2013.847968

Eagleman, D. M. (2005). Time and the Brain: How Subjective Time Relates to Neural Time. Journal of Neuroscience, 25(45), 10369-10371. doi:10.1523/JNEUROSCI.3487-05.2005

Falmagne, J.-C. (1985). Elements of psychophysical theory. Oxford, Oxfordshire, New York: Clarendon Press; Oxford University Press.

Finnerty, G. T., Shadlen, M. N., Jazayeri, M., Nobre, A. C., & Buonomano, D. V. (2015). Time in Cortical Circuits. Journal of Neuroscience, 35(41), 13912-13916. doi:10.1523/JNEUROSCI.2654-15.2015

Garcia-Perez, M. A. (2014). Does time ever fly or slow down? The difficult interpretation of psychophysical data on time perception. Front Hum Neurosci, 8, 415. doi:10.3389/fnhum.2014.00415

Grondin, A. (1999). When to start explicit counting in a timeintervals discrimination task: A critical point in the timing process of humans. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 993-1004.

Grondin, S. (2010). Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys, 72(3), 561-582. doi:10.3758/APP.72.3.561

Grondin, S. (2014). About the (Non)scalar Property for Time Perception. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of Interval Timing (Vol. 829, pp. 17-32). New York, NY: Springer New York.

Hellstrom, A. (1979). Time errors and differential sensation weighting. Journal of Experimental Psychology. Human Perception and Performance, 5(3), 460-477.

Hellstrom, A. (2000). Sensation weighting in comparison and discrimination of heaviness. Journal of Experimental Psychology. Human Perception and Performance, 26(1), 6-17.

Hellstrom, A. (2003). Comparison is not just subtraction: effects of time- and space-order on subjective stimulus difference. Percept Psychophys, 65(7), 1161-1177.

Hellström, A. (1985). The time-order error and its relatives: Mirrors of cognitive processes in comparing. Psychological Bulletin, 97, 35-61.

Hellstrom, A., & Rammsayer, T. H. (2015). Time-order errors and standard-position effects in duration discrimination: An experimental study and an analysis by the sensation-weighting model. Atten Percept Psychophys, 77(7), 2409-2423. doi:10.3758/s13414-015-0946-x

Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12(7), 273-280. doi:10.1016/j.tics.2008.04.002

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446.

Johnson, H. A., Goel, A., & Buonomano, D. V. (2010). Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nat Neurosci, 13(8), 917-919. doi:10.1038/nn.2579

McCormack, T., Wearden, J. H., Smith, M. C., & Brown, G. D. (2005). Episodic temporal generalization: a developmental study. Q J Exp Psychol A, 58(4), 693-704.

Merchant, H., Zarco, W., & Prado, L. (2008). Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. Journal of Neurophysiology, 99(2), 939-949. doi:10.1152/jn.01225.2007

Patching, G. R., Englund, M. P., & Hellstrom, A. (2012). Timeand space-order effects in timed discrimination of brightness and size of paired visual stimuli. Journal of Experimental Psychology. Human Perception and Performance, 38(4), 915-940. doi:10.1037/a0027593

R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/. Retrieved from URL http://www.R-project.org/.

Rammsayer, T. H., & Troche, S. J. (2014a). Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis. Adv Exp Med Biol, 829, 33-47. doi:10.1007/978-1-4939-1782-2_3

Rammsayer, T. H., & Troche, S. J. (2014b). In search of the internal structure of the processes underlying interval timing in the sub-second and the second range: a confirmatory factor analysis approach. Acta Psychol (Amst), 147, 68-74. doi:10.1016/j.actpsy.2013.05.004

Wearden, J. H. (1992). Temporal generalization in humans. Journal of Experimental Psychology: Animal Behavior Processes, 12(2), 134-144. doi:10.1037/0097-7403.18.2.134

Wearden, J. H. (2004). Decision processes in models of timing. Acta Neurobiologiae Experimentalis, 64(3), 303-317.

Wearden, J. H. (2008). Slowing down an internal clock: Implications for accounts of performance on four timing tasks. The Quarterly Journal of Experimental Psychology, 61(2), 263-274. doi:10.1080/17470210601154610

Wearden, J. H., & Bray, S. (2001). Scalar timing without reference memory? Episodic temporal generalization and bisection in humans. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology, 54(4), 289-309. doi:10.1080/713932763

Wearden, J. H., Denovan, L., & Haworth, R. (1997). Scalar timing in temporal generalization in humans with longer stimulus durations. Journal of Experimental Psychology: Animal Behavior Processes, 23(4), 502.

Wearden, J. H., & Lejeune, H. (2008). Scalar properties in human timing: conformity and violations. Quarterly Journal of Experimental Psychology, 61(4), 569-587.

Wearden, J. H., & Towse, J. N. (1994). Temporal generalizations in humans: Three further studies. Behav Processes, 32(3), 247-263. doi:10.1016/0376-6357(94)90046-9

Descargas

Publicado

23-03-2017

Cómo citar

Mikulan, E., Bruzzone, M., Serodio, M., Muñoz E., Singer, N., Sigman, M., … Ibáñez A. (2017). EFECTOS DE ORDEN DE PRESENTACIÓN Y RANGOS DE DURACIÓN EN LA TAREA DE GENERALIZACIÓN TEMPORAL EPISÓDICA. LÍMITE Revista Interdisciplinaria De Filosofía Y Psicología, 12(40). Recuperado a partir de https://revistalimite.uta.cl/index.php/limite/article/view/86

Número

Sección

Artículos de Investigación

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.